تعدادی لامپ خاموش در یک ردیف قرار دارند. کلید تعدادی از لامپ ها را می زنیم و منجر به تغییر وضعیت آن لامپ ها می شود (از خاموش به روشن و برعکس)... در پایان چند لامپ روشن وجود خواهد داشت؟
تعداد 1024 لامپ خاموش با شماره های 1 تا 1024 در یک ردیف قرار دارند. کیان در 10 مرحله، کلید تعدادی از لامپ ها را می زند که منجر به تغییر وضعیت آن لامپ ها می شود (از خاموش به روشن و برعکس) اگر کیان در مرحله iام کلید همه لامپ هایی را که باقی مانده ی شماره آن ها برابر 2i صفر نیست بزند، در پایان چند لامپ روشن وجود خواهد داشت؟
الف) 341 ب) 683 ج) 682 د) 342 هـ) 1023
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
پاسخ معما:
341
کافی است اعداد را به صورت دودویی در نظر بگیریم و روی اولین جایی که رقم 1 ظاهر شده است، حالت بندی کنیم. در جدول بالا تعداد خوردن کلید برای هر دسته از لامپ ها و تعداد لامپ های موجود در هر دسته نوشته شده است.
واضح است که در هر دسته، تعداد زده شدن کلید به تعداد رقم های بعد از اولین رقم 1 می باشد. در نمایش اعداد x به منظور 1 یا 0 می باشد و لامپ های دسته هایی در پایان روشن خواهد بود که فرد بار کلید آنها خورده باشد.
پس پاسخ ما برابر است با:
1+22+24+26+28=341